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Abstract. The peculiarities of polariton light scattering under strong anharmonic interaction
of the fundamental vibration with the complex transition (i.e. polariton Fermi resonance) are
investigated. It is shown that the polariton Fermi resonance influences the polariton band shape
and dispersion curves. A detailed comparison with experimental results for a BaTiQ5 crystal is
carried out. ‘

1. Introduction

During the last few years the approaches to the investigation of low-frequency vibrations
with pulse techniques, e.g. pulsed stimuwlated Raman scattering, have been intensively
developed [1-5]. The application of such techniques is vety attractive and useful for
phonon—polariton light scattering. By changing the wavevector value, one can investigate
lattice excitations of crystals down to decades of reciprocal centimetres where traditional
Raman scattering or IR absorption cannot be successfully used if considerable damping of
excitations takes place. The technique advanced becomes especially useful for investigations
in the range of temperatures near phase transitions. It follows from [1-3] that the proposed
approach is based on the fact that vibrational properties of a crystal in a low-frequency range
can be described by a model of one, two or several oscillators. The probable situation when
the combined frequencies fafl into the fundamemtal vibrations range and the interaction
between these vibrations takes place at proper symmetry is not considered here.

The well known phenomenon of Fermi resonance (FR) has been discovered in the
CO, molecule and has also been investigated later for the phonon and polariton spectra of
crystals [6-9] (and references therein). It may be noted that the problem of FR and two-
phonon intramolecular excitations were studied in [8, 9] for CO, and C8; crystals by time-
resolved spectroscopy, similar to [1-5]. In particular the relaxation rates for components of
Fermi doublets were measured in a wide temperature region and conclusions concerning the
mechanism of relaxation were made. However, the polaritonic problem was not investigated
in these articles.

The polariton spectrum band shape and dispersion curves become especially complicated
‘at FR since the intensity of polariton scattering is determined not only by fundamental
vibration but also by new states which arise owing to FR, namely

(i) by the range of two-particle states (TPSs) which is formed by a pair of ‘free’ phonons
and
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(ii) by biphonons, i.e. by a pair of phonons which are ‘bonded’ by anharmonic
interaction. The ratio of band intensities depends strongly or the angle of light scattering.
So it may be that the lower polariton branch is not determined by the fundamental vibration
but is determined by the biphonon which appears owing to FR.

Therefore in the present paper we would like to pay attention to that in particular.
According to this idea we develop the theory of light scaftering by polaritons in crystals
taking into account FR and carry out the calculations for the BaTiOs crystal. This theory
allows one to obtain the frequency dependence of damping parameters and to clarify the role
of the crystal parameters including anharmonic interaction in the formation of the polariton
spectrum.

The paper consists of the following. In section 2 the microtheory of a crystal is
considered, and the light-scattering differential cross section, expressed by appropriate Green
functions, is calculated. In section 3, analysis of the experimental results is carried out, and
dispersion curves for the BaTiOs crystal are plotted.

The time dependences of the light-scattering intensity will be considered elsewhere.

2. Energy operator and light-scattering cross section

Interaction of the polariton with the TPS band, i.e. the polariton FR, was firstly considered
in [10,11] in which the abrupt changes in the shape of the polariton dispersion curve inside
the TPS range have been predicted. These changes are caused by critical points in the
density-of-states function.

The question about the polariton band shape under the resonance interaction of a
polariton with the two-phonon band was considered for the simple case when only cubic
anharmonic terms in the power series expansion of potential energy was taken into account
[12]. In this case, dispersion curves plotted according to the maxima of scattering techniques
[6,7] do not exhibit the ‘inverse’ portion of the curve inside the TPS band predicted by
[11).

In the present paper the generalization of this new approach which was developed in
[6,7,12] is carried out taking into consideration all the main factors responsible for FR in
crystals. We avoid the traditional polariton representation [12, 13] in the calculations. As
was discussed by Tait [14], this description of polaritons is very convenient for investigation
of the damping of the excitations. It provides additional advantages in the case of polariton
FR. This description allows one to introduce explicitly the important constant of optical
anharmonism and electro-optical constant.

Using the second quantization formalism, the Hamiltonian operator, which describes the
polariton excitation in a crystal lattice, may be written in the form (forfi=c=1)
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where
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Here a7, afl and b,'i'}_, by, are the creation and annihilation operators for a phonon of s
lattice branch number with wavevector ¢ and for a gquantum of electromagnetic field with
polarization A; w4 is the frequency of 5 and g phonon types; wy is the plasmon frequency;

v is the volume of the unit cell; V (;‘; is the anharmonicity constant; D(skh) is

the constant of phonon—photon interaction; (g’ + g” + - - -) is the delta function; N is the
number of unit cells in the crystal.
The intensity of the incident light scattered by crystal lattice is given by [7, 15]

d?o
depd$2

In this formula {...,...}, is the Fourier component of the retarded Green function of
operators W"‘ and Wq whlch is proportional to the product of the electronic polarizability
tensor ¥, incident—light polarization vector ¢;, and scattered-light polarization vecior eg.
Expanding the tensor x;; in the power series and restricting the row by second-order
terms in the atom displacements and by the linear terms in electromagnetic field, one can

obtain
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In equation (7), x{P(g) and x; (g) are the values described by the third-order tensor, and
they de })end on the displacement of atoms and on the electromagnetic field, respectively;
the xss (¢, t — g)-valve depends on the ‘displacement of atoms and is described by the
fourth-order tensor.

In the case of FR, among all the Green functions in (6), one should take into account
only those which have resonance in the actual frequency region @ ~ wyur ~ 2wpq. Thus
equation (6) is reduced to the following expression (A = 1):
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where

4|k
Z.
v

Zp =—1

)

z = x/ XD is the electro-optic constant; g = x2/x\" is the parameter of optical
anharmonicity; in the following, we assume that x (k) x I (k) and X2, k —t) do not
depend on the wavevector.

To obtain the equations of motion for Green functions of type

G () = (i), p*(0))
G () = (P (0), 670

it is convenient to perform a twofold differentiation on time. Then in Fourier representation
the system. of equations for the above-mentioned Green functions reads as
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Here
@2 = w2y + 20, R (k) &y = wyr, + 2R (kw) RY(kw) = RY + iR}

are the shift and damping, respectively, of frequency due to interaction of the vibration with
other lattice phonons.

One can obtain the Fourier component GP* (q, kk_ q) of the Green function as

follows:
pu [ 9 k- aq
G ( A

which describes the contribution of two-phonon states to the intensity of light scattering and
may be determined from the second system of equations:
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The equation for the function {pgm” tf,,ga,'i"“}) differs from (13) only by the exchange

¢ — g¢". In equation (13), rj is the filling number of phonons with frequency
@pg = Wpg + 1¥p; the anharmonic constant A and I are given by [9]
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From equations (12)—(14), one can obtain
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Inserting (15) into (10) and (11) and taking into account the notation
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one can obtain the following system of equations for the functions G and Gi‘“ :
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. .

The solution of this system gives the following expression for the Green functions:
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where o = sp? — [k%, F,f‘" = wﬂk(d,‘:l)z(zi e;/m;)7! is the oscillator strength of the
0 — u transition.

The traditional procedure for exiracting the ground diclectric function [16] and the
orthogonality conditions for amplitudes of the latl:lce atom shift [17] were used to obtain
(20) and (21).

One can obtain a system of equations for the second group of Green functions in a
similar way:

¢ ( g kk— q I") = (o), ;ojp(om_q(g)»
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The solution of the system above produces expressions for the corresponding Fourier
components:
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It is clear that equation (22) coincides with (15). This is natural because both equations
describe similar processes.
Finally for the Fourer components of the third group of Green functions given by
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one can obtain
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The first term in (26) is real; hence only the second term gives the contribution to the
intensity of light scattering.
Substituting equations (21)—(26) into equation (8) and taking into account the relations
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Substituting equation (20) into equation (27} and using equations (16) and (17) for
flkw) and Qi 1, the expression for light scattering may be written in the standard form for
the case of FR [8,9] as

(28)
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where the values of 4, b, ¢ and 4 are given by the following expressions:
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The expression for the cross section, equation (29), includes all the main factors
responsible for the FR phenomenon in the Raman process. It describes the light scattering
by lattice phonons for small and large angles. Here it should be noted that, in accordance
with the definition of operators @, and 7y, accepted in this paper, they differ from those
used in the previous work [18] by a factor of 1/4/2. This means that the anharmonic
parameters 8, I', A and xfbl) should be enhanced by a factor of (v/2)", where n =2, 3, 4
and 1, respectively. When this is taken into account, the result of the present work fully
coincides with the appropriate expression in [18].

We would like to emphasize that the results of Raman light scaitering for large angles
(about 90°) are very similar to IR formulae. However, we should take into consideration
that the meanings of the parameter of optical anharmonicity in the two cases are different;
for Raman scattering 8 = (2)/ x(l) is the ratio of second- to first-order terms in the power
series for tensor polarizabihty, for IR, B is the ratio of analogous terms in the expansion of
the dipole momentum of the crystal unit celi.

From equations (29) and (304)-(30e) one can see that intensity of light scattering by a
polariton at FR. conditions has a complex dependence on the frequency o, the wavevector
k, the anharmonic parameters 8, I" and A and the function of the two-phonon density of
states, For this reason we shall consider some examples to analyse the principal features of
light scattering for small and large angles.

3. Experimental results

As an example we consider the BaTiO; crystal. In the low-temperature phase (7 < 115°C)
this ferroelectric has the C3, space group and has one formula molecule in the elementary
cell. Detailed studies of the Raman spectra of the BaTiOs crystal have been described in
{19-22]. The experimental results and assignment of bands are discussed intensively and,
in principle, are in agreement with each other. The polariton specira were studied in more
detail in [20] (see also [23]), and so we shall follow these studies in our investigations.

The polariton curves in [20] were constructed taking into account the presence of several
(three) fundamental vibrations. We paid attention to the fact that in the region of specttum
considered, overlapping of one- and two-phonon excitations takes place. Therefore the
effect of FR can be important to the understanding of the spectral features in the region
studied. , . :

In accordance with [20-22] the following assignment of the frequency is accepted
(figure 1): the bands 170, 270 and 520 cm™! are the one-phonon excitations while the
broad bands « =~ 270 cm™ and 8 =~ 520 cm~! are the second-order vibrations. There
are also three narrow bands 185, 475 and 725 cm™~! assigned to the first order which are
observed in the LO phonon spectrum. Such an assignment was confirmed in the review in
[23].

However, not all the TO (170, 270 and 520 cm~!) and LO (185, 475 and 725 cm™)
bands mentioned above may be attributed to first-order transitions (fundamental frequencies).
The reason is that complex mixing of one- and two-phonon vibrations takes place in the
BaTiO; crystal for the speciral range under consideration. In particular, the polaritonic
Fermi resonance (PFR) occurs due to the coincidence of the intensive fundamental vibration
w =270 cm™! with two-phonon w-band vibrations.

The experimental spectra for different angles ¢ of light scattering are plotted in figure 2
(solid curves). For the theoretical description of the band shape at FR. conditions the
function f(kw) of the two-phonon density of states is very important. It is determined by
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210 (@) qly

320

Figure 1. The spectrum of Raman scattering of the
BaTiOs; crystal in the A; excitation geometry (from
[201): (a) TO phonons in the X {(ZZ}X + AY geometry;
(b) LO phonons in the X (ZZ)X + AZ geometry.

the dispersion law wpr(2wpq ~ wyk). For model caleulations the frequency wpg may be
taken in the generalized form

wpg = p + M} cos(gya) + M5 cos(gyay) + M3 cos(g,a,). €3]

Varying the values of My, M3 and M7, one can obtain different structures of the two-phonon
bands which significantly influence the spectrum.

It is necessary to emphasize that the light-scattering cross section d%s/(dew dS2) = 5" is
the function of iwo variables & and w. Thus it is convenient to investigate S” as a function
of one variable (the other variable, ¢.g. k, being fixed). The successive set of such functions
S”(k; = constant) makes it possible to obtain the dependence of the polariton band shape
on wavevector (or scattering angle g). Experiments are usually carried out at constant
angle g between the directions of incident (wy) and scattered (wg) light. The relation
between k& and g follows from the conservation law for the wavevector: k = kp — k.
Then |k[? = eo(@? + w2 g?), g < 1. Using the values of frequencies corresponding to the
maxima of light scattering for given k, reconstruction of the polariton dispersion curve is
possible.

Analysis of the experimental spectra and its comparison with the theoretical curves
obtained according to equations (29) and (30a)-(304) shows that the best fitting takes place
if we use the ratio M{ > MZ, M{ in the description of the dispersion law wp,. Fitting of
the theoretical results to the experimental spectra is fulfilled in the following way: firstly
we achieve good agreement for large-angle scattering (g ~ 90°) (curve 4’ in figure 2), and
then we generate curves 3'-1 by varying g from 90° to 0°. The fitting parameters are the
following: G = 0.42, A = 0.11, b = 0.08 and w3 Ff"* = 1250 (the energy parameters are
given in units of 2MP = 2(M{ + My + M) =45 cm™).

The value of wrg unperturbed by FR is 265 cm™. The small maximum at @ ~ 170 cm™!
observed for large scattering angles g (figure 2, curve 4) is the biphonon split from the two-
phonon « band due to its anharmonic interaction with the fundamental vibration wro. In
the region of very small scattering angles (g < 1°) the increase in the calculated biphonon
maxima is significant. This is evident from curves 1-3 in figure 2. The shifts of the maxima
at @ = 170 cm™! and & = 270 cm™! versus k {i.e. g), which are obtained from the data in
figure 2, are plotted in figure 3 (broken parts of curves 1 and 2) and show good agreement
with the experimental data (solid curves with open circles).

Figure 3 shows an additional polariton curve 4 which begins at about 700 cm™1. This
means that the experimentally observed band at @ ~ 715 cm~! (L.O) can be considered as the
LO component of the fundamental wrp = 270 cm™". The sharp maxima at & ~ 170 cm™!
and @ = 185 cm™! (in figure 1) can be assigned then to the TO and LO components of
the biphenon, split from the two-phonon ¢ band. The maximum at @ =~ 520 cm™! is due
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Figure 2. The spectra of polariton scattering of Figure 3. Comparison of experimental (—O—) and
the BaTiOs crystal in the Aj excitation geometry for  theoretical {— — -) dispersion curves of polaritons in the
various scattering angles 8: curve 1, § = 0.85°; curve  frequency range of fundamental TO vibration and of
2,8 =2%curve 3,8 =4° curve 4, § = 8%, ——,  TPS bands (regions indicated on the frequeney axis) of
experimental results [20]; — — —, our calculation. the BaTiOs crystal.

to the maximum in the density of two-phonon states in the b zone, which comesponds to
2t =~ 540 cm™! transitions.

Thus, for BaTiOs, taking into account the anharmonic interactions between vibrations,
i.e. PFR, makes it possible to explain the principal feature in the polariton and Raman
spectra for A;-type symmetry in the frequency range @ =~ 1800-800 cm~L.

4. Sommary

For the correct description of polariton scattering under the conditions of FR. it is necessary
{as is seen for the example of a BaTiO; crystal) to consider accurately the cross section
spectral dependence. This procedure is necessary since the cross section maxima may
disagree with the denominator minima due to the complicated frequency dependence of
equations (29) and (30a2)—(30e¢). This is obviously the main reason for the inconsistency
between the results of [12] and the conclusions obtained in [11] about the regularity of
polariton scattering inside TPS bands. Outside this band, where the influence of the two-
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phonon-states density function f(kew) is small, these inconsistencies are less significant and
the dispersion dependences obtained by both methods of calculation are similar,
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